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Time Domain Green’s Functions for Lossy and
Dispersive Multilayered Media

Chong-Jin Ong, Student Member, IEEE, and Leung Tsang, Fellow, IEEE

Abstract—We have introduced a fast method of calculating
the time domain Green’s functions for multilayered media. In
this paper, we demonstrate the use of this method to compute the
scalar potential Green’s function for a multilayer lossy dispersive
medium on a PEC ground. The strength of the method lies in
obtaining the Green’s function for many source-to-field distances

and time instances simultaneously. It only takes 6 min 28 s
to compute 100 336 = 33 600 space time Green’s function
points in Matlab on a Pentium III 867 MHz processor with 1 GB
of RAM for a multilayered lossy dispersive medium.

Index Terms—Absorbing media, dispersive media, Green func-
tion, nonhomogeneous media, time domain analysis.

I. INTRODUCTION

THERE has been a lot of interest in the computation of
the Green’s functions for planarly layered media. This

is because the Green’s functions describe the mathematical
relationship between the source and the field such that integral
equations can be used to solve for the currents in the layered
media problem. Important applications of such integral equation
solutions are signal integrity of high speed digital interconnects
and analysis of microstrip circuits.

Work by Michalski and Mosig focused on obtaining the fre-
quency domain dyadic Green’s functions for planarly-stratified,
multilayered media [1]. The objective was to use the mixed
potential integral equation (MPIE) to analyze 3-D objects em-
bedded in layered media.

Recent work by Okhmatovski and Cangellaris improves on
the efficiency of evaluating the frequency domain Green’s func-
tion for large electrical distances between the source and the
field [2]. The work in [2] also avoids the extraction of surface
wave poles, which would be difficult for multilayered media.

Due to more recent applications that require analysis of wide-
band phenomena, like digital signals and short pulses, fast EM
analysis in the time domain is becoming increasingly impor-
tant. The common fast method of calculating the time-domain
Green’s function for layered media has been based on full wave
complex images and FFTs [3]. The method of complex images
[3] loses accuracy for a certain distance range [2]. It is also less
useful for multilayered media.
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We have introduced an efficient method of calculating the
Green’s functions for the time-domain electric field integral
equation (TDEFIE) for multilayered media [4]. The method is
outlined as follows.

1) Complex frequency is used so that the surface wave poles
are lifted off the real axis [5]. The integration in can
be carried out on the real axis. This is an advantage for
multilayered media as pole extraction would be difficult.

2) Half-space extraction is used so that the integrand of the
nonhalf-space portion decays exponentially on the real

axis, even for the worst case where both the source
and the field points are on the surface [6]. This speeds
up the evaluation of the Green’s function even for large
source-to-field distances. The nonhalf-space portion is
evaluated using the fast Hankel transform (FHT). The
FHT yields results for many source-to-field points simul-
taneously.

3) Branch cut integration is used to integrate the half-space
portion. The integrand of the branch cut integral decays
exponentially so convergence of the integral is quite fast.

4) FFT is used in the complex frequency plane to compute
the time-domain Green’s functions from the frequency
domain. Methods employing the free-space time-domain
Green’s function would have difficulty evaluating disper-
sive media such as FR-4.

In the previous paper [4], we demonstrated the use of our
method in solving for the Green’s functions for lossless, nondis-
persive multilayered media. In this paper, we extend and demon-
strate the use of our method in calculating the Green’s function
for lossy, dispersive, multilayered media. This is important be-
cause most signal integrity problems occur on printed circuit
boards such as FR-4, which is lossy and dispersive. Throughout
this paper, only the time domain Green’s function for the scalar
electric potential will be discussed. The time domain Green’s
function for the vector magnetic potential can be evaluated in
a similar manner.

II. MATHEMATICAL FORMULATION

For a multilayered medium with both source and field points
on the top layer, the frequency domain Green’s function is
given by

(1)

where . and are the TE and TM
reflection coefficients respectively due to a plane wave incident
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on the multilayered medium. and can be calculated
from equations found in [7] and [8]. The source is taken to be at
the origin. The in (1) is complex so as to avoid singularities
on or near the real axis.

The time-domain convolution of the Green’s function and
the time-domain source function can be obtained from the fre-
quency domain Green’s function . Let
for complex frequency and be a frequency-domain source
function. Noting that the time-domain convolution must be real

can be separated into the half-space and nonhalf-
space portion

where

(2)

(3)

and are the reflection coefficients for TE and TM
polarized waves respectively incident on the boundary between
layers 0 and 1 where layer 1 is infinitely thick. Equation (2) is
evaluated using branch cut integration. This is to speed up the
evaluation of the integrals as the integrands decay exponentially
along the branch cuts. Equation (3) is evaluated using the fast
Hankel transform (FHT). The FHT transforms the Sommerfeld
integral into a convolution integral such the FFT can be used in
its evaluation. The FHT yields results for many source-to-field
points simultaneously. The use of complex frequency shifts the
poles off the real axis allowing the integration in (3) to be
evaluated without pole extraction.

III. MODELING OF LOSSY DISPERSIVE MEDIA

The lossy dispersive media has to have relative permittivity
characteristics that obey the laws of causality. Fig. 1 shows a
two-layer lossy dispersive media on a PEC ground, which is an-
alyzed in this paper. The bottom material is chosen as FR4. The
top material is less lossy than FR4, and is henceforth referred to
as material A.

The FR4 material is modeled according to (3) found in [9].
The less lossy material A was modeled using [9, Eq. (5)]

where , ,
, , and .

Fig. 1. Two-layer lossy dispersive media.

Fig. 2. Validation of the accuracy of the method described in the paper.

IV. NUMERICAL RESULTS

Fig. 2 shows the comparison of the accuracy between
for the two-layer lossy disper-

sive media on the PEC ground plane generated with complex
frequency and real frequency. The comparison function was
computed using real frequency with the nonhalf-space por-
tion numerically integrated along the Sommerfeld integral
path (SIP). The layered media is as shown in Fig. 1. The
source-to-field distance . The height of each layer

. The source function was a Gaussian pulse with
a pulse width . The agreement between the two
solutions is very good. This validates the method we described
in Section II for the analysis of lossy dispersive multilayered
media.

Fig. 3 shows the comparison of
for the same lossy dispersive media shown

in Fig. 1 with that of a lossless, nondispersive media. The
nondispersive and lossless media has first layer as and
second layer as . , and are the same as for Fig. 2.
The lossy dispersive media “dampens” the Green’s function
as time progresses. Fig. 3 shows that errors result in the late
time if lossy dispersive media is assumed to be lossless and
nondispersive.
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Fig. 3. Showing the difference between lossy dispersive case and lossless
nondispersive case.

Fig. 4. Three-dimensional mesh of 100 points of � and 336 points of t.

The strength of the method described in Section II lies
in obtaining the Green’s function for many source-to-field
distances and time instants simultaneously through the
FHT and the FFT respectively. Fig. 4 shows the 3-D mesh of

as a function of and . The
geometry of the structure is as shown in Fig. 1. Computation of
the Green’s function for 100 points in and 336 points in in
Matlab took 6 min 28 s on a Pentium III 867 MHz processor
with 1 GB of RAM. The computation time would be further
reduced if the program is written in C or fortran. In contrast,
if the same number of points were calculated on the same
machine using real frequency and without any fast algorithms,
the calculation would take over 10 h in Matlab.
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